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Abstract
Mobile Edge Computing (MEC) has emerged as a promising para-

digm enabling vehicles to handle computation-intensive and time-

sensitive applications for intelligent transportation. Due to the

limited resources in MEC, effective resource management is crucial

for improving system performance. While existing studies mostly

focus on the job offloading problem and assume that job resource

demands are fixed and given apriori, the joint consideration of job

offloading (selecting the edge server for each job) and resource

allocation (determining the bandwidth and computation resources

for offloading and processing) remains underexplored. This paper

addresses the joint problem for deadline-constrained jobs in MEC

with both communication and computation resource constraints,

aiming to maximize the total utility gained from jobs. To tackle this

problem, we propose an approximation algorithm, IDAssign, with
an approximation bound of

1

6
, and experimentally evaluate the per-

formance of IDAssign by comparing it to state-of-the-art heuristics

using a real-world taxi trace and object detection applications.
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1 Introduction
Internet of Vehicles (IoV), a derivative technology of the Internet of

Things (IoT), plays a pivotal role in realizing intelligent transporta-

tion systems by connecting vehicles and infrastructure to enable

real-time service support.IoV utilizes advanced wireless commu-

nication technologies such as ultra-reliable low-latency communi-

cation of 5G to facilitate intelligent applications like smart traffic
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control, autonomous driving, and real-time navigation. These appli-

cations are generally computation-intensive and highly sensitive to

latency, posing significant challenges for onboard vehicular systems

with limited computing capabilities.

Mobile Edge Computing (MEC) has emerged as a promising

paradigm enabling vehicles to support computation-intensive and

time-critical applications in IoV. In MEC, vehicles can offload jobs to

roadside edge servers (ES) that provide communication (bandwidth)

and computation resources for instant processing. Deploying ES

close to vehicles significantly reduces communication latency com-

pared to traditional cloud computing, enabling prompt responses

to vehicular requests. However, the bandwidth and computation

resources of ES are limited, necessitating efficient strategies for job
offloading (selecting the ES for each job) and resource allocation
(determining the bandwidth and computation resource allocations

for offloading and processing) in MEC.

Jointly optimizing job offloading and resource allocation en-

ables MEC systems to dynamically allocate resources based on

availability, improving overall resource utilization. For instance,

an MEC system with abundant computational resources but lim-

ited bandwidth can allocate more computing power while reducing

bandwidth per job, thereby accommodating more jobs while main-

taining the required quality of service. While numerous studies

have investigated the Deadline-constrained job Offloading Problem

(DOP) in MEC under the assumption of fixed resource allocation

per job [7, 8, 11, 18, 19], the joint optimization of job offloading

and resource allocation [3, 5, 6, 9, 13, 16, 17], referred to as the

Deadline-constrained job Offloading and resource Allocation Prob-

lem (DOAP), remains underexplored.

DOP reduces to the two-dimensional Generalized Assignment

Problem (2DGAP) when considering both bandwidth and com-

putational resource contention (e.g., [8]) and to the Generalized

Assignment Problem (GAP, known to be NP-hard [4]) when only

computational constraints are considered (e.g., [7, 8, 11, 18, 19]).

DOAP is a more generalized version of DOP that additionally con-

siders resource allocation, making it inherently NP-hard as well.

Obtaining an exact solution for DOP or DOAP (e.g., [3, 16]) re-

quires exponential time. Consequently, most existing studies focus

on polynomial-time heuristic algorithms. Among these, approxi-

mation algorithms stand out as a special class of heuristics that

provide worst-case performance guarantees while maintaining low

computational complexity. Prior studies that propose approxima-

tion algorithms (e.g., [7, 8, 11, 17–19]) primarily focus on the DOP

variant, formulating their problems as GAP by considering only

computational constraints with fixed resource allocations. Although
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Wang et al. [17] addressed a DOAP and proposed an approximation

algorithm with a probabilistic guarantee, their approach prede-

fines resource allocation by manually specifying the offloading and

processing times for each job. As a result, their approximation algo-

rithm effectively applies only to DOP rather than the more general

DOAP. To the best of our knowledge, no approximation algorithm

with constant approximation ratio has been proposed for DOAP.

DOAP constraints can be categorized into two types. The first

type ensures that allocated resources and offloading decisions sat-

isfy job-specific requirements, such as deadlines and ES accessibility.

The second type enforces system-wide resource constraints, en-

suring that the total allocated resources at each ES do not exceed

its capacity. We define an assignment instance of a job as a com-

bination of (i) an offloading ES and (ii) allocated bandwidth and

computational resources. Given an assignment instance, we can

immediately verify whether it satisfies all first-type constraints

and determine its contribution to the objective function. By focus-

ing only on feasible assignment instances (i.e., those satisfying the

first-type constraints), we only need to focus on the system-wide

resource constraints in DOAP. Differences in the mathematical for-

mulation of DOAP across various MEC applications primarily stem

from variations in the first-type constraints and optimization ob-

jectives. Modeling DOAP based on assignment instances provides

a uniform framework applicable to various scenarios.

In this paper, we study a DOAP inMECwith both bandwidth and

computation resource constraints under the IoV scenario, aiming to

maximize the total utility gained from offloading jobs; we refer to

this specific DOAP as problem P. We first formulate P as an Integer

Linear Programming (ILP) problem by enumerating all possible

assignment instances. Then, we introduce an approximation algo-

rithm for P, denoted as IDAssign, based on a local ratio framework

[1]. We prove that IDAssign is a
1

6
-approximation algorithm for P,

i.e., the total utility obtained by IDAssign is no less than
1

6
of the

optimal utility of P. Since P is formulated with the uniform frame-

work, the approximation ratio of IDAssign is applicable across

various DOAP applications. Finally, we evaluate IDAssign using
profiled data from object detection applications and real-world

taxi traces [15]. While providing a theoretical guarantee, IDAssign
demonstrates performance comparable to all evaluated baseline

algorithms in the literature [3, 5, 6, 9, 13].

2 System Model and Problem Formulation
In this section, we first introduce the MEC architecture, followed by

a detailed formulation of DOAP in the presented MEC framework

using its generalized form.

2.1 System Architecture
As illustrated in Fig.1(a), we consider an MEC comprising a set of

roadside ES providing services to moving vehicles. The notations

used in the paper are summarized in Table1. LetM denote the set

of𝑀 ES, with𝑚𝑘 ∈ M representing the 𝑘-th ES. Each ES includes

an access point (providing bandwidth for job offloading) and a

server (providing computation resource for job processing). The

computation resource capacity of each ES is measured in computing

units, which depend on the specific server hardware configuration.

For example, using NVIDIA’s multi-instance GPU technology [12],

ES Wireless Network

(a)

channel gain

distance
1st ring

2nd ring

3rd ring

(b)

Figure 1: (a) An example of mobile edge computing for IoV;
(b) Partition the communication range of a wireless network
into three network rings;

a GPU-enabled ES can partition its computation resources into

multiple computing units, each comprising a predefined amount

of memory, cache, and compute cores. Let 𝐶𝑘 be the number of

computing units available at𝑚𝑘 , and let 𝐶 = max{𝐶𝑘 | 𝑚𝑘 ∈ M}.
We consider a 5G network in MEC, where the Orthogonal Fre-

quency Division Multiple Access (OFDMA) is used as the network

access method for vehicles. In an OFDMA-enabled network, the

smallest bandwidth allocation unit available to users is referred to

as a resource unit or bandwidth unit (BU) [20]. Each user may be as-

signed one or more BU for data offloading. The size (or bandwidth)

of a BU is measured in megahertz (MHz) and is determined by the

specific configuration of the 5G network. Let 𝐵𝑘 denote the total

number of BUs available at𝑚𝑘 , with 𝛽𝑘 representing the size of

each BU. Define 𝐵 = max{𝐵𝑘 | 𝑚𝑘 ∈ M}. The wireless network of

each𝑚𝑘 has a limited effective communication range, and a vehicle

can only offload a job to 𝑚𝑘 when it is within this range. Since

the channel gain in wireless networks diminishes as the distance

between a vehicle and an ES increases [21], we divide each ES’s

effective range into several network rings such that the channel

gain remains unchanged (from a practical viewpoint) within each

network ring (Fig. 1(b)). Let𝑚𝑘𝑟 be the 𝑟 -th network ring of𝑚𝑘 .

Let N represent the set of 𝑁 jobs to be processed. The 𝑗-th job,

𝑛 𝑗 ∈ N , has an input data size 𝜃 𝑗 (measured in megabytes, MB) and

a deadline Δ 𝑗 (measured in seconds). When a job 𝑛 𝑗 is generated, its

vehicle’s geographical location determines the set of network rings

covering the vehicle and the corresponding channel gains. Let R 𝑗

be the set of network rings covering 𝑛 𝑗 ’s vehicle at the time of its

release, where |R 𝑗 | ≤ 𝑀 . Based on the vehicle’s moving speed and

direction, the duration 𝑡𝑣
𝑗𝑘𝑟

for which the vehicle remains within

the coverage of network ring𝑚𝑘𝑟 ∈ R 𝑗 can be estimated. If𝑚𝑘𝑟 is

selected for offloading 𝑛 𝑗 , the processing of 𝑛 𝑗 must be completed

before 𝑛 𝑗 ’s vehicle leaves the coverage of𝑚𝑘𝑟 . Furthermore, if 𝑛 𝑗

is processed on𝑚𝑘 using 𝑐 computing units, let 𝑡
𝑝

𝑗𝑘𝑐
represent the

processing time for 𝑛 𝑗 .

Definition 1 (Assignment Instance). An assignment instance
of job 𝑛 𝑗 is defined as ℓ ≜ ⟨𝑚ℓ𝑟 , 𝑏ℓ , 𝑐ℓ ⟩, which represents the scenario
where 𝑛 𝑗 is offloaded to ES𝑚ℓ when 𝑛 𝑗 ’s vehicle is covered by net-
work ring𝑚ℓ𝑟 ∈ R 𝑗 and 𝑛 𝑗 is allocated 𝑏ℓ bandwidth units and 𝑐ℓ
computing units.

Suppose job 𝑛 𝑗 is assigned based on assignment instance ℓ ≜
⟨𝑚ℓ𝑟 , 𝑏ℓ , 𝑐ℓ ⟩ (Definition 1). Based on Shannon’s theorem [14], the



Local Ratio based Real-time Job Offloading and Resource Allocation in Mobile Edge Computing RAGE ’25, May 6–9, 2025, Irvine, CA, USA

data offloading rate is given by 𝜂 𝑗 = 𝑏ℓ · 𝛽ℓ log2 (1 + 𝑝 𝑗 · ℎℓ𝑟 /𝜎2),
where𝑏ℓ ·𝛽ℓ is the allocated bandwidth, 𝑝 𝑗 is the offloading power of

𝑛 𝑗 ’s vehicle,ℎℓ𝑟 is the channel gain in network ring𝑚ℓ𝑟 , and 𝜎 is the

noise spectral density. The offloading time 𝑡𝑜
𝑗
is given by 𝑡𝑜

𝑗
= 𝜃 𝑗/𝜂 𝑗 .

Given computation resource allocation 𝑐ℓ , the processing time of

𝑛 𝑗 is 𝑡
𝑝

𝑗
= 𝑑

𝑝

𝑗ℓ𝑐ℓ
. Given that the data size of results is typically

much smaller than job inputs, and the bandwidth capacity of the

downlink is generally larger than that of the uplink in 5G networks,

we disregard the result return time, as done in [10]. Let 𝑡 𝑗 = 𝑡𝑜
𝑗
+ 𝑡𝑝

𝑗

denote the completion time of 𝑛 𝑗 . Each offloaded job 𝑛 𝑗 offers a

utility 𝑢 𝑗 depending on 𝑡 𝑗 , which is defined as follows.

𝑢 𝑗 (𝑡 𝑗 ) =

𝑈 𝑗 if 𝑡 𝑗 ≤ Δ 𝑗

𝑈 𝑗 · Ψ𝑗 (𝑡 𝑗 ) if Δ 𝑗 < 𝑡 𝑗 ≤ 𝛾 𝑗Δ 𝑗

0 otherwise

. (1)

𝛾 𝑗 ≥ 1 represents the tolerance factor for deadline violations of job

𝑛 𝑗 . The full utility offered by 𝑛 𝑗 when completed before its deadline

Δ 𝑗 is denoted by𝑈 𝑗 . Let 𝑢 (ℓ) be the utility obtained from 𝑛 𝑗 when

it is assigned according to ℓ , as defined in Eq. (1). Ψ𝑗 is a utility-

reduction function for deadline violations that maps to the range

[0, 1]. This functionΨ𝑗 can take various forms (e.g., linear, nonlinear,

or step functions), ensuring that 𝑢 𝑗 (𝑡 𝑗 ) is flexible enough to model

diverse practical scenarios. For example, 𝑢 𝑗 (𝑡 𝑗 ) may represent a

function related to energy consumption, completion time, or a

combination of both factors.

In IoV, safety-critical jobs (e.g., object detection for autonomous

driving) typically have hard deadlines that do not permit any dead-

line violations. Conversely, non-safety-critical jobs (e.g., image or

video rendering) have soft deadlines, tolerating some deadline vio-

lations at the cost of reduced user experience when deadlines are

missed. Therefore, this work considers jobs with both hard and soft

deadlines. If 𝑛 𝑗 has a hard deadline, then 𝛾 𝑗 = 1. If 𝑛 𝑗 has a soft

deadline, 𝛾 𝑗 > 1, and the utility derived from 𝑛 𝑗 decreases from 𝑈 𝑗

to 0 according to Ψ𝑗 after its deadline is exceeded.

2.2 Problem Formulation
In this paper, we aim to develop a job offloading and resource

allocation strategy that maximizes the utility gained from jobs

while satisfying system resource constraints, ES access constraints,

and job deadline constraints (Problem P). Next, we formulate P in

its generalized form.

Definition 2 (Feasible Assignment Instance). An assignment
instance ℓ ≜ ⟨𝑚ℓ𝑟 , 𝑏ℓ , 𝑐ℓ ⟩ of job 𝑛 𝑗 is feasible if ℓ satisfies (i) the ES
access constraint (i.e., 𝑚ℓ𝑟 ∈ R 𝑗 ), (ii) the deadline constraint (i.e.,
𝑡 𝑗 ≤ min{𝛾 𝑗Δ 𝑗 , 𝑡

𝑣
𝑗ℓ𝑟
}), and (iii) the resource constraint (i.e., 𝑏ℓ ≤

𝐵ℓ , 𝑐ℓ ≤ 𝐶ℓ ).

Given the finite bandwidth and computing resources of each ES,

for each job 𝑛 𝑗 ∈ N , we enumerate all its potential assignment

instances by considering each𝑚𝑘𝑟 ∈ R 𝑗 and all possible resource

allocations. We then restrict our focus to feasible assignment in-

stances (as defined in Definition 2). Henceforth, unless explicitly
stated otherwise, any reference to an assignment instance refers to
a feasible assignment instance. Let L denote the set of all feasible

assignment instances for all jobs, L 𝑗 ⊂ L the set of assignment

instances for job 𝑛 𝑗 , and E𝑘 ⊂ L the set of assignment instances

Table 1: Notation (Main Parameters and Variables)

Symb. Definition

M the set of𝑀 ESs;𝑚𝑘 ∈ M denotes an ES

𝐶𝑘 the total computing units of ES𝑚𝑘 ; 𝐶𝑘 ≤ 𝐶

𝐵𝑘 the total bandwidth units of ES𝑚𝑘 ; 𝐵𝑘 ≤ 𝐵

𝑚𝑘𝑟 𝑟 -th network ring of ES𝑚𝑘

N the set of 𝑁 jobs; 𝑛 𝑗 ∈ N denotes a job

R 𝑗 the set of accessible network rings of job 𝑛 𝑗 ; |R 𝑗 | ≤ 𝑀

Δ 𝑗 deadline of job 𝑛 𝑗

𝛾 𝑗 tolerance factor for deadline violation of job 𝑛 𝑗 ; 𝛾 𝑗 ≥ 1

𝑈 𝑗 utility gained from job 𝑛 𝑗 when completed before Δ 𝑗

𝑡 𝑗 completion time of job 𝑛 𝑗

ℓ ℓ ≜ ⟨𝑚ℓ𝑟 , 𝑏ℓ , 𝑐ℓ ⟩ is an assignment instance of a job

𝑢 (ℓ) utility gained from job 𝑛 𝑗 when assigned based on ℓ

L the set of all assignment instances of all jobs

L 𝑗 the set of all assignment instances of job 𝑛 𝑗

E𝑘 the set of all assignment instances mapped to ES𝑚𝑘

L(ℓ) set of assignment instances related to the same job as ℓ

E(ℓ) set of assignment instances mapped to the same ES as ℓ

L𝐿 the set of all light assignment instances in L
L𝐻 the set of all heavy assignment instances in L
𝑥ℓ binary selection variable of assignment instance ℓ

associated with ES𝑚𝑘 . For a given assignment instance ℓ , let L(ℓ)
represent the set of all assignment instances corresponding to the

same job as ℓ , and let E(ℓ) denote the set of all assignment in-

stances associated with the same ES as ℓ . Since each job has at most

𝑀 accessible network rings, 𝐵 bandwidth allocation choices, and 𝐶

computation resource options, the total number of assignment in-

stances in L is at most 𝑁𝑀𝐵𝐶 . For any set of assignment instances

S, let 𝑢 (S) = ∑
ℓ∈S 𝑢 (ℓ). For each assignment instance ℓ ∈ L, let

𝑥ℓ ∈ 0, 1 be the selection variable of ℓ , where 𝑥ℓ = 1 if and only if ℓ

is chosen in the solution. Then, we formulate P as follows.

(P) max

∑
ℓ∈L𝑢 (ℓ) · 𝑥ℓ (2a)

subject to:

∑
ℓ∈E𝑘 𝑏ℓ · 𝑥ℓ ≤ 𝐵𝑘 ,∀𝑚𝑘 ∈ M (2b)∑
ℓ∈E𝑘 𝑐ℓ · 𝑥ℓ ≤ 𝐶𝑘 ,∀𝑚𝑘 ∈ M (2c)∑

ℓ∈L 𝑗
𝑥ℓ ≤ 1,∀𝑛 𝑗 ∈ J (2d)

𝑥ℓ ∈ {0, 1},∀ℓ ∈ L (2e)

Eqs. (2b) and (2c) are the bandwidth and computation resource

constraints for each ES, respectively. Eq. (2d) ensures that at most

one assignment instance is selected for each job. Notably, since set

L consists of only feasible assignment instances, the deadline and

ES access constraints have been implicitly satisfied.

3 Instance Dividing Assignment Algorithm
In this section, we present an approximation algorithm for P, named

the Instance Dividing Assignment Algorithm (IDAssign), which
leverages a local ratio framework combinedwith an instance-dividing

technique. Later in this section, we formally prove that IDAssign
achieves a

1

6
-approximation ratio for P. To the best of our knowl-

edge, IDAssign is the first algorithm that provides a constant ap-

proximation ratio for DOAP.

The detailed steps of IDAssign are outlined in Algorithm 1. For

each assignment instance ℓ , let ˜𝑏ℓ =
𝑏ℓ
𝐵ℓ

and 𝑐ℓ =
𝑐ℓ
𝐶ℓ

represent
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Algorithm 1: Instance Dividing Assignment Algorithm

1 IDAssign(wi, L):
2 Remove all instances ℓ from L with𝑤𝑖 (ℓ) ≤ 0;

3 if L = ∅ then return S𝑖 = ∅;
4 if L𝐿 ≠ ∅ then ℓ𝑖 ← argminℓ∈L𝐿

(max{ ˜𝑏ℓ , 𝑐ℓ }) else
ℓ𝑖 ← argminℓ∈L𝐻

(max{ ˜𝑏ℓ , 𝑐ℓ });
5 Decompose utility vector wi

into wi
1 and wi

2 (i.e.,

wi = wi
1 +w

i
2) such that for any ℓ ∈ L,

𝑤𝑖
1
(ℓ) = 𝑤𝑖 (ℓ𝑖 ) ·


1 if ℓ ∈ L(ℓ𝑖 )
( ˜𝑏ℓ + 𝑐ℓ ) if ℓ ∈ E(ℓ𝑖 ) \ L(ℓ𝑖 )
0 otherwise

;

6 S𝑖+1 ← IDAssign(wi
2, L);

7 if S𝑖+1 ∪ {ℓ𝑖 } is feasible then return S𝑖 ← S𝑖+1 ∪ {ℓ𝑖 }
else return S𝑖 ← S𝑖+1;

the normalized bandwidth and computation resource allocation,

respectively. We classify an assignment instance ℓ as a light instance
if

˜𝑏ℓ ≤ 1

2
and 𝑐ℓ ≤ 1

2
, and as a heavy instance otherwise. Let L𝐿

denote the set of all light instances in L, and L𝐻 the set of all

heavy instances in L. The algorithm is then recursively called

with the initial invocation IDAssign(u,L), where u is a vector

containing the utility values 𝑢 (ℓ) for all ℓ ∈ L. Since the utility of

each assignment instance is updated at each recursive layer, we

denote the updated utility of ℓ at the 𝑖-th recursive layer as𝑤𝑖 (ℓ),
where 𝑢 (ℓ) represents the initial utility of ℓ .

In each recursive layer 𝑖 , the algorithm selects an instance ℓ𝑖 with

the smallest max{ ˜𝑏ℓ𝑖 , 𝑐ℓ𝑖 }, prioritizing instances in L𝐿 over those

in L𝐻 (line 4). The utility value𝑤𝑖 (ℓ) for each assignment instance

ℓ ∈ L is then decomposed into two components,𝑤𝑖
1
(ℓ) and𝑤𝑖

2
(ℓ)

(line 5), where𝑤𝑖
2
(ℓ) represents the marginal gain corresponding

to the choice of ℓ𝑖 . The marginal utility vector wi
2 becomes the

utility vectorwi+1
for the next recursive layer (line 6). Based on the

solution S𝑖+1 returned from layer (𝑖 + 1), ℓ𝑖 is added to the solution
if it satisfies the feasibility constraints (2b)–(2d). Next, we prove

the approximation ratio of IDAssign for P as follows.

Theorem 1. IDAssign is a 1

6
-approximation algorithm for P.

Proof. Suppose Q is an optimal solution of P. Let the innermost

recursive layer of IDAssign be layer 𝐼 , and the outermost be layer

1. We use simple induction to prove this lemma by showing that

𝑤𝑖 (S𝑖 ) ≥ 1

6
𝑤𝑖 (Q) for 𝑖 = 𝐼 , 𝐼 − 1, ..., 1 (since w1 = u).

Base Case (𝑖 = 𝐼 ): When 𝑖 = 𝐼 ,𝑤𝑖 (ℓ) ≤ 0,∀ℓ ∈ L. The returned
S𝐼 = ∅, so𝑤 𝐼 (S𝐼 ) = 0 ≥ 𝑤 𝐼 (Q) ≥ 1

6
𝑤 𝐼 (Q).

Inductive Step (𝑖 < 𝐼 ): When 𝑖 < 𝐼 , suppose 𝑤𝑖+1 (S𝑖+1) ≥
1

6
𝑤𝑖+1 (Q). Since wi

2 = wi+1
, 𝑤𝑖

2
(S𝑖+1) ≥ 1

6
𝑤𝑖
2
(Q). Based on the

utility decomposition in line 5,𝑤𝑖
1
(ℓ𝑖 ) = 𝑤𝑖 (ℓ𝑖 ), so𝑤𝑖

2
(ℓ𝑖 )=0; thus,

𝑤𝑖
2
(S𝑖 ) = 𝑤𝑖

2
(S𝑖+1) ≥ 1

6
𝑤𝑖
2
(Q) . (3)

In line 7, if ℓ𝑖 can be added to S𝑖 , 𝑤𝑖
1
(S𝑖 ) ≥ 𝑤𝑖 (ℓ𝑖 ). Otherwise,

either one ℓ ∈ L(ℓ𝑖 ) already exists in S𝑖+1 that stops ℓ𝑖 from being

added to S𝑖 (constraint (2d)) or the remaining resource in ES𝑚ℓ𝑖

is not enough to accommodate ℓ𝑖 (constraints (2b) and (2c)). In

the former case, 𝑤𝑖
1
(S𝑖 ) ≥ 𝑤𝑖 (ℓ𝑖 ) due to line 5. In the latter case,

let A𝑖 = S𝑖+1 ∩ E(ℓ𝑖 ), representing the instances that have been

selected in S𝑖+1 and have resource contention with ℓ𝑖 . We consider

the following two situations for the latter case: ℓ𝑖 ∈ L𝐻 and ℓ𝑖 ∈ L𝐿 .
If ℓ𝑖 ∈ L𝐻 , as we only consider instances in L𝐻 when L𝐿 = ∅,
the solution S𝑖+1 contains only heavy instances; in this situation,

there exists at least one heavy instance ℓ ∈ S𝑖+1 that prevents ℓ𝑖
being added to the solution due to resource contention. Based on

line 5 and the definition of heavy instances, 𝑤𝑖
1
(S𝑖 ) ≥ 1

2
𝑤𝑖 (ℓ𝑖 ).

If ℓ𝑖 ∈ L𝐿 , either
∑
ℓ∈A𝑖

˜𝑏ℓ ≥ 1

2
or

∑
ℓ∈A𝑖 𝑐ℓ ≥ 1

2
(i.e., at least

1

2
of 𝑚ℓ𝑖 ’s bandwidth or computation resource are allocated to

S𝑖+1); thus,𝑤𝑖
1
(S𝑖 ) ≥ 1

2
𝑤𝑖 (ℓ𝑖 ) due to line 5. Therefore, if instance

ℓ𝑖 cannot be added to S𝑖 , we have 𝑤𝑖
1
(S𝑖 ) ≥ 1

2
𝑤𝑖 (ℓ𝑖 ). Besides,

𝑤𝑖
1
(Q) is maximized when Q contains one ℓ ∈ L(ℓ𝑖 ) \ E(ℓ𝑖 ) and

all resources of ES𝑚ℓ𝑖 has been allocated to ℓ′ ∈ Q ∩E(ℓ𝑖 ) \L(ℓ𝑖 );
in this case,𝑤𝑖

1
(Q) = 𝑤𝑖 (ℓ𝑖 ) + 2𝑤𝑖 (ℓ𝑖 ) = 3𝑤𝑖 (ℓ𝑖 ). Hence, we have

𝑤𝑖
1
(S𝑖 ) ≥ 1

6

𝑤𝑖
1
(Q) . (4)

Given Eq. (3), Eq. (4), andwi = wi
1+w

i
2, we have𝑤

𝑖 (S𝑖 ) ≥ 1

6
𝑤𝑖 (Q).

Based on simple induction,𝑤𝑖 (S𝑖 ) ≥ 1

6
𝑤𝑖 (Q) for 𝑖 = 𝐼 , ..., 1. □

Time Complexity. SinceL contains at most𝑁𝑀𝐵𝐶 assignment in-

stances, IDAssign has at most 𝑁𝑀𝐵𝐶 recursive layers. In line 5, at

most 𝑁𝑀𝐵𝐶 assignment instances are considered for utility decom-

position. Thus, the time complexity of IDAssign is O((𝑁𝑀𝐵𝐶)2).

4 Numerical Evaluation
In this section, we evaluate the performance of IDAssign. This
algorithm is compared against three existing algorithms from the

literature, focusing on utility performance and runtime efficiency.

All experiments were performed on a desktop PC equipped with

an Intel(R) Core(TM) i7-14700KF CPU and 64 GB of RAM.

4.1 Simulation Setup
A real taxi GPS data trace [15], collected onApril 1, 2018 in Shanghai

by Shanghai Qiangsheng Taxi Company, is used as the vehicle traffic

data. We select a city area of 1km×1km in Shanghai and extract

all taxi trajectories passing through this area over a period of 15

minutes during the evening peak. We consider a MEC with 20 ES

evenly distributed along the roads. Each ES is mounted at a height

of 10m, and its network is divided into 2 rings with coverage ranges

of 0 ∼ 100m and 100 ∼ 200m. For each ES𝑚𝑘 , 𝛽𝑘 is set to 2MHz

(the smallest BU type inWiFi-6), and 𝐵𝑘 is set to either 20 or 40. The

data offloading rate 𝜂 𝑗 for one BU is set to 1.65MBps for ring 1 and

1.15 MBps for ring 2. Each ES is equipped with a GPU randomly

sampled from 5 types of GPUs (TITAN XP, TITAN RTX, RTX3090,

RTX4060Ti, and A100). We set 𝐶𝑘 of each ES𝑚𝑘 as 25.

In this experiment, we synthesize jobsets with varying resource

utilizations and jobset sizes. The bandwidth utilization 𝑟𝑢𝑏 of a

jobset is defined as the ratio of the total bandwidth demand of all

jobs in a jobset to the total bandwidth available in the MEC [5], and

the computation resource utilization 𝑟𝑢𝑐 of a jobset is analogously

defined. We consider two resource utilization sampling ranges:

low ([0.6, 0.9]) and high ([1.2, 1.5]), forming four different range

combinations. Jobset size 𝑁 ranges from 200 to 400 in steps of 40.
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Figure 2: (a) average performance ratios of algorithms under the (low,low) range combination for different jobset sizes; (b)
average performance ratios of algorithms under the (high,high) range combination for different jobset sizes; (c) average runtime
of algorithms for different jobset sizes (the plots for Greedy and Iterative are overlapped);

For each jobset size, we sample 150 different (𝑟𝑢𝑏 , 𝑟𝑢𝑐 ) pairs from
each range combination. In total, we synthesize 3600 jobsets.

Given a jobset size and the sampled (𝑟𝑢𝑏 , 𝑟𝑢𝑐 ), we synthesize
a jobset as follows. The jobset release time is randomly sampled

within the 15-minute period, and each job is randomly mapped

to a taxi active at the release time to obtain the ring coverage R 𝑗 .

For each job 𝑛 𝑗 , we randomly sample its input 𝜃 𝑗 from 45 images

ranging from 0.15 to 0.63 MB, and its utility 𝑈 𝑗 from the range

[20, 60]. Then, we randomly sample the application type of 𝑛 𝑗
from 9 GPU applications (resnet34/50/101, densenet121/169, and

vgg11/13/16/19) for object detection. We use Stafford’s Randfixed-

sum Algorithm [2] to distribute 𝑟𝑢𝑏 and 𝑟𝑢𝑐 to each individual job

in the jobset in a uniformly random and unbiased manner, which is

used to compute the job deadline. Next, we compute the maximum

tolerable completion time𝛾 𝑗Δ 𝑗 where we uniformly sample𝛾 𝑗 from

the range [1.8, 2.2] and define the function Ψ𝑗 as a linear decreasing

function when 𝑛 𝑗 has a soft deadline.

Baseline Algorithms. We compare IDAssign with three heuris-

tic algorithms that are summarized from the literature on DOAP:

Greedy [5], Iterative [3, 6, 9, 13], and Game [9]. Note that none

of these baselines provide theoretical guarantees on the perfor-

mance of their algorithms for problem P. Greedy defines 𝑒ℓ =

𝑢 (ℓ)/( 𝑏ℓ
𝐵ℓ
× 𝑐ℓ

𝐶ℓ
) as the resource efficiency of ℓ ∈ L, and adds ℓ ∈ L

into the solution whenever feasible in a descending order of 𝑒ℓ .

Iterative decouples P into a job offloading subproblem and a

resource allocation subproblem; then, solve these subproblems it-

eratively until convergence. Game defines P as a non-cooperative

game, where each vehicle is a player; in each round, select the ℓ ∈ L
that contributes the largest increment on the total utility gained.

Metrics. We use Performance Ratio to measure the performance

of all algorithms, defined as the ratio of the total utility obtained

by an algorithm to the optimal utility for P (the optimal utility is

obtained by solving P using the ILP solver Gurobi, with a timeout

limit set to 10 minutes).

4.2 Result Discussion
We first evaluated the average performance ratios of the algorithms

across various jobset sizes under the range combinations (low, low)

and (high, high) (Figs. 2(a) and 2(b)). The combination (low, low)

indicates that both 𝑟𝑢𝑏 and 𝑟𝑢𝑐 of the jobsets are sampled from

Figure 3: Performance ratios of algorithms under different
resource utilization range combinations (𝑟𝑢𝑏 , 𝑟𝑢𝑐 )

the low range. For both range combinations, IDAssign demon-

strates improved performance as the jobset size increases, with

better results observed under the (low, low) combination. This per-

formance trend occurs because IDAssign prioritizes light instances
(i.e., L𝐿) over heavy instances (i.e., L𝐻 ). When the jobset size is

small or when the resource demand falls within the (high, high)

range combination, the per-job resource demand increases, making

heavy instances more favorable candidates in an optimal solution.

However, due to the prioritization strategy in IDAssign, the util-
ity values 𝑤𝑖 (ℓ) of many heavy instances ℓ ∈ L𝐻 are frequently

reduced to zero before being considered, thereby decreasing the

likelihood of selecting heavy instances and ultimately diminishing

the overall performance of IDAssign.
The average runtime of algorithms for different jobset sizes

is illustrated in Fig. 2(c). While offering a theoretical guarantee

and competitive practical performance, IDAssign achieves a run-
time comparable to the baseline algorithms (Greedy, Game, and
Iterative). This makes IDAssign a preferable choice when both
a theoretical performance guarantee and minimal computational
overhead are required. Furthermore, IDAssign exhibits nearly lin-

ear runtime scalability with respect to jobset size, confirming its

practical suitability for handling large-scale jobsets.

The overall algorithm performance across all resource utiliza-

tion range combinations (including (low,low), (low, high), (high,

low) and (high,high)) in the MEC with 20 ES is presented in Fig. 3.

IDAssign achieves an average performance ratio of 76.9%. Despite

the baseline algorithms lacking theoretical guarantees, IDAssign
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Figure 4: average runtime of algorithms for different MEC
scales (with jobset size 280)

still demonstrates a practical performance comparable to Greedy,
Game, and Iterative, underscoring its practical effectiveness. Re-
markably, IDAssign surpasses its theoretical bound of

1

6
by 60.2%,

illustrating its ability to narrow the gap between theoretical guar-

antees and optimal solutions.

To evaluate the runtime scalability of IDAssign across different

MEC scales, we consider four additional MEC with 25, 30, 35, and

40 ES, referred to as MEC25, MEC30, MEC35, and MEC40, respec-

tively. The base configuration with 20 ES is denoted as MEC20.

For each MEC, the jobset size is fixed at 280, and 150 jobsets are

synthesized for each resource utilization range combination. The

runtime performance across varying MEC scales is shown in Fig. 4.

With a constant jobset size, the runtime of IDAssign exhibits linear
growth with the number of ES. This scalability trend, together with

observations from Fig. 2(c), demonstrates that IDAssign achieves
efficient runtime scalability with respect to both jobset size and the

number of ES in the MEC.

5 Conclusion
This paper addressed a joint job offloading and resource alloca-

tion problem, P, in MEC with both bandwidth and computation

resource constraints, aiming to maximize the total utility gained

from jobs. We proposed an approximation algorithm, IDAssign, for
P with a theoretical bound of

1

6
. IDAssign provided the first con-

stant approximation bound for P. Experimental results showed that

IDAssign delivered superior practical performance and exhibited

strong runtime scalability. Notably, despite the absence of theo-

retical guarantees for the baseline algorithms, IDAssign achieves
comparable practical performance, underscoring its efficiency and

effectiveness. In the future, we plan to explore the online deploy-

ment of resource allocation algorithms in MEC environments with

dynamic network conditions.
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